親愛的網友:
為確保您享有最佳的瀏覽體驗,建議您提升您的 IE 瀏覽器至最新版本,感謝您的配合。
Google新品發表
數位焦點
通訊世界
社群網路
3C生活
軟體情報
科技娛樂
電玩電競

時力鳳山矛盾加劇…不滿黃捷親綠 陳惠敏首開砲

土耳其承諾在敘北永久停火 川普宣布解除制裁

DeepMind團隊再以人工智慧系統擊敗《星海爭霸II》電競選手

2019-01-27 13:18楊又肇

先前以AlphaGo圍棋項目壓倒韓國九段棋手李世乭,並且以新版本接續擊敗世界棋王柯潔之後,DeepMind團隊將發展方向轉向遊戲,透過強調即時戰略思考的《星海爭霸II》訓練電腦系統。而在稍早藉由名為「AlphaStar」的人工智慧系統運作之下,DeepMind團隊再次讓電腦在連續兩組五局對戰中贏過電競選手。

分享

「AlphaStar」的訓練模式,基本上也是透過分析諸多玩家操作的遊戲遊玩過程,並且藉由類似AlphaGo以「分身」形式,在系統執行運作中分成諸多分身進行對戰,並且從對戰過程中學習經驗。

在電腦系統累積學習超過200年的遊玩時間,「AlphaStar」總計訓練出5種不同遊玩操作風格,最後在與電競選手的兩組五局對戰過程中,獲得十戰全勝成果。

不過,其實在與身為人類的電競選擇對戰中,「AlphaStar」基本上還是佔有不少優勢,例如相較人類雙眼所能看見地圖範圍依然有限,同時即便電競選手的操作速度比一般人更快,但難免依然會有操作失誤,或是無法用滑鼠100%點擊正確物件位置,而對於電腦系統來說,這些基本上都不會是問題。

因此,「AlphaStar」之所以能贏過電競選手,除了藉由分身訓練累積超過200年的遊玩經驗,以及精進過的不同遊玩風格,更可藉由知曉所有地圖資訊內容、更有效率、精度表現的點按操作獲得優勢,實際上電腦系統的操作速度僅在277 APM (actions per minute,每分鐘操作次數),相比電競選手可達559 APM的情況相差許多,甚至針對全新狀況執行判斷時間更需要0.35秒,此時有經驗的電競選手已經可以做出更多即時判斷。

而在另一場對戰過程中,DeepMind團隊將可看見全局地圖優勢拿掉,讓電腦系統跟人眼判斷一樣,必須透過分析地圖資訊才能獲取有用數據,藉此執行各類判斷,因此最終在此場對戰落敗給電競選手。

選擇與暴雪娛樂合作,透過《星海爭霸II》訓練電腦系統,DeepMind團隊希望能藉由必須在更短時間內完成數據資訊採集,並且在短時間內分析,進而做出具體操作反應的情況,讓人工智慧能因此學習如何用更快方式產生「思考」,同時做出更合適反應操作,預期將可讓人工智慧運算效率進一步提昇。

《原文刊登於合作媒體mashdigi,聯合新聞網獲授權轉載。》" target="_blank">mashdigi,聯合新聞網獲授權轉載。》

AlphaGo圍棋

楊又肇

聯合新聞網 (udn.com)數位頻道記者,同時身兼自由寫手與Mashdigi網站 (mashdigi.com)創辦者身分,平常喜歡電玩、科技類新品,以及軟體、網路相關內容,也喜歡隨手撰寫內容介紹新玩意。

更多數位新品、技術介紹與科技趨勢內容:https://mashdigi.com/

商品推薦

贊助廣告

商品推薦

留言


Top