快訊

兩大原因 多家產險業者對承保特斯拉打退堂鼓

亞運棒球/終於亮牌!「最強銀行員」先發對泰國 林子偉打第2棒

亞運拳擊/對中國大陸打嗨了!男將賴主恩擊退地主闖4強至少銅牌

USB4.0滲透率與殺手級應用有待時間催化

示意圖/ingimage
示意圖/ingimage

【作者: 季平】

聯合國國際電信聯盟(ITU)去年底發布評估報告,指2022年全球73%的10歲以上人口持有手機;We Are Social《Digital 2023:TAIWAN》報告指出,2023年台灣網路使用總人數已達2,168萬人,相當於全台90.7%的人口,較2022年增加16萬人。台灣民眾的數位裝置內容也漸趨多元化,《Digital 2023:TAIWAN》數據顯示,23%的民眾擁有一台以上的遊戲主機、35%擁有智慧手環/手錶,平板電腦的普及率更高達42%。隨著元宇宙應用、手機聯網與智慧生活成為日常,串聯智慧載具的USB占據重要的戰鬥位置。

USB發展史:從分治到統一

USB(Universal Serial Bus)的中文名稱是「通用序列匯流排」,白話的說法就是「接頭」,可以串聯各種智慧載具,1994年由Compaq、DEC、IBM、Microsoft、Intel、NEC和Nortel等公司聯合提出,發展迄今歷經多種介面及版本迭代,如USB Type-A、USB Type-B、USB Type-C。有點年紀的使用者應該記得那段電腦插槽不夠用或不好用的年代,直到1996年USB1.0登場,USB開始神進化。

在USB1.0的年代,使用者已經明顯發現跟過去的接口相比,USB具有諸多優勢,如USB隨插即用,使用過程中即使拔去USB也不用擔心影響裝置運作,還能提供2.5W的電力,傳輸速度達1.5Mbit/s,但缺點是傳輸線信號衰減狀況嚴重。1998年USB1.1推出後在這部分缺點獲得改善,甚至傳輸速率來到12Mbit/s。2000年USB2.0推出後傳輸速度達480Mbit/s,而且相容性變佳,USB儼然成為另一種3C標配。

以手機使用的USB來說,在Nokia、Sony Ericsson等手機大廠稱霸的年代,雖然手機多能支援USB傳輸,但手機接口多半是一人一把號,各吹各的調,不同廠牌裝置的相容性並不高。在USB-IF(USB Implementers Forum)協會的促成下,各大業者同意使用共同接頭,2007年出現Micro-USB,不僅保有USB2.0協議,還搭配BC(Battery Charge)充電協議,距離手機USB接口大一統之路再近了一些,擋在路上的是蘋果(Apple)的FireWire傳輸介面,形成iOS與Android分庭抗禮的局面,2012年蘋果(Apple)推出iPhone 5,改成正反面接可插的Lighting接口。

時至今日,常見的手機充電接頭規格約有三種:USB micro-B、USB Type-C及Lightning。從市占率來看,市售手機隨附充電器中約50%屬於USB micro-B規格,在非蘋果(Apple)智慧型手機中,充電器接口已逐步轉換至USB Type-C,市占約29%,蘋果(Apple)手機仍以Lightening為主,市占約21%。

前述市占比可能很快出現變化。歐盟(EU)於2022年6月決議,2024年秋季前,歐盟國家銷售的中小型電子裝置(如智慧手機、平板電腦、耳機、數位相機、遊戲機、電子書閱讀器等)都必須將充電器接孔改為USB Type-C,至於不同充電接孔及功率型號複雜的筆電產品另有額外的40個月緩衝期調整相關零組件。此舉宣告充電規格百家爭鳴的局面告終,未來,USB Type-C將成為歐盟電子產品的通用充電接頭。這也代表未來USB Type-C規格將遍及各類3C產品,而蘋果(Apple)也可能改用USB Type-C以符合歐盟法規。

【欲閱讀更豐富的內容,請參閱2023.6月(第379期)CTIMES零組件雜誌

USB一孔定江山(2023.6第379期)
USB一孔定江山(2023.6第379期)

延伸閱讀

蘋果WWDC大會傳MR裝置亮相 台廠供應鏈拚商機

蘋果將推新Mac 台鏈受惠

看得到吃不到?WSJ:蘋果高利儲蓄帳戶傳轉帳有困難

歐洲議會投票 支持制定更嚴格的歐盟供應鏈法

相關新聞

材料創新與測試技術並進 第三代半導體開啟應用新革命

第三代半導體是指相對於第一代和第二代而言的新一代半導體技術。第一代半導體泛指的是以矽為主要材料的半導體晶片,第二代半導體則是以三五族化合物為主要材料,包括砷化鎵(GaAs)、磷化銦(InP)等。第三代半導體則以碳化矽(SiC)和氮化鎵(GaN)為代表,其主要特色包括材料的變革、能源效率的提升、高頻率操作、高溫操作、高功率密度、高電流密度等。

矽光子發展關鍵:突破封裝與材料障礙

在光電子融合中,矽光子學發揮著核心作用。矽光子學是一種利用CMOS製程技術,支援半導體工業在矽基板上整合光接收元件、光調變器、光波導和電子電路等元件的技術。負責轉換光訊號和電訊號的光收發器,和積體電路晶片的混合,已逐漸轉變為近封裝光學元件和共封裝光學元件。最終的光電融合是3D共封裝光學,即三維整合。可以毫不誇張地說,基於矽光子的光電子融合,將會是未來計算機系統和資訊網路的關鍵技術。

矽光子大勢降臨 台灣迎接光與電整合新挑戰

矽光子(silicon photonics)絕非易事,因它是個徹底跨領域的科技,是把光與電放在同一個晶片中進行操控的技術,開發者不僅要熟悉電子學,對於於光子學也要聊若指掌。但是台灣產業界長期以來就只專研於電子,對於光子可以說所知甚少,如何把進度趕上,成為當前半導體產業最重要的課題。

「光」速革命 AI世代矽光子帶飛

雲端運算與AI技術快速升級,解決「智慧化」海量運算需求成為重中之重。IDC預估,全球數據總量於2025年將達180zettabytes(1ZB相當於1兆GB)。龐大的數據量儲存與流動需要仰賴暢通無阻的雲端設備和網路速度,而符合AI級應用的傳輸速度甚至上看800G!如何讓運算及傳輸速度「不卡頓」成為技術創新課題,其中,矽光子扮演吃重角色。一場由「光」取代「電」做為數據傳輸主力的技術演進史於焉展開。

晶背供電技術的DTCO設計方案

一些晶片大廠近期宣布在其邏輯晶片的開發藍圖中導入晶背供電網路(BSPDN)。比利時微電子研究中心(imec)於本文攜手矽智財公司Arm,介紹一種展示特定晶背供電網路設計的設計技術協同優化(DTCO)方案,其中採用了奈米矽穿孔及埋入式電源軌來進行晶背佈線。他們展示如何在高效能運算應用充分發揮該晶背供電網路的潛力,並介紹在標準單元進行晶背連接的其它設計選擇,探察晶背直接供電方案所能發揮的最大微縮潛能。

AI助攻晶片製造

勤業眾信聯合會計師事務在其《2023全球高科技、媒體及電信產業趨勢預測》指出,2023年需特別關注的趨勢之一,是AI設計未來晶片。他們預測,2023年全球半導體市場產值將達到6,600億美元。AI不僅帶來經濟規模,還能協助晶片製造商突破摩爾定律邊界,節省時間與金錢。

商品推薦

udn討論區

0 則留言
規範
  • 張貼文章或下標籤,不得有違法或侵害他人權益之言論,違者應自負法律責任。
  • 對於明知不實或過度情緒謾罵之言論,經網友檢舉或本網站發現,聯合新聞網有權逕予刪除文章、停權或解除會員資格。不同意上述規範者,請勿張貼文章。
  • 對於無意義、與本文無關、明知不實、謾罵之標籤,聯合新聞網有權逕予刪除標籤、停權或解除會員資格。不同意上述規範者,請勿下標籤。
  • 凡「暱稱」涉及謾罵、髒話穢言、侵害他人權利,聯合新聞網有權逕予刪除發言文章、停權或解除會員資格。不同意上述規範者,請勿張貼文章。