我們擁有數據其實從未完整?《暗數據》教你如何做出更好決定

書名:《暗數據》
作者:大衛‧漢德(David Hand)
出版社:大塊文化
出版時間:2021年05月27日
書名:《暗數據》
作者:大衛‧漢德(David Hand)
出版社:大塊文化
出版時間:2021年05月27日

數據專家大衛.漢德在《暗數據》書中探討許多對於暗數據視而不見的情況,討論這些情況如何讓我們做出錯誤、危險,甚至災難性的結論與行動。作者檢視了現實生活中的例子,從挑戰者號太空梭爆炸到複雜的金融詐騙,並分享一套務實的暗數據分類法,說明這些暗數據是如何產生,以便我們學會辨別與掌控暗數據。作者不僅教導我們要對未知事物造成的問題提高警覺,也闡述如何利用暗數據,從中得益,讓我們得到更深入的理解,做出更好的決定。(編按)

文/大衛‧漢德(David Hand)

數據鬼魂

  讓我先從一個笑話講起。

  前幾天我在路上遇見一位老人,他走在馬路中央,每隔五十步左右就在路上撒一小堆粉末。我問他在做什麼,他說:「我在撒大象粉。大象受不了這種粉末,所以都不會靠近。」

  我說:「但這裡沒有大象。」

  他回答:「沒錯!你瞧這粉末多有效!」

  笑話講完了,來點正經的。

  全球每年有將近十萬人死於麻疹,每五百名感染者就有一人死於併發症,其餘則是終生耳聾或大腦受損。幸好該傳染病在美國極為罕見,一九九九年只有九十九起通報病例。然而,二○一九年一月華盛頓州麻疹爆發,導致該州宣布進入緊急狀態,其餘各州的通報病例也顯著增加。美國以外的國家也有類似情形。二○一九年二月中旬,烏克蘭的麻疹爆發病例已經超過二萬一千例。歐洲二○一七年有二萬五八六三例麻疹,二○一八年卻暴增高達八萬二千多例。羅馬尼亞從二○一六年元旦至二○一七年三月底,則有四千多起麻疹通報病例,造成十八人死亡。

  麻疹是可怕的惡疾,由於感染之後要過幾週才會有明顯症狀,很容易悄悄蔓延而不被察覺,根本還不曉得它在傳播,就已經被感染了。

  然而,麻疹是可以預防的,只要接種疫苗就能免於被傳染的風險。而美國施行的全國免疫計畫也確實非常成功,應該說太成功了,使得施行這類計畫的國家的大多數家長,一輩子都沒見過或經歷過這種可預防疾病的可怕。

  因此,當政府建議家長帶孩子去打疫苗,好預防這種他們從來沒見過或聽過親朋好友左鄰右舍得過、疾病預防管制中心還曾宣布絕跡的疾病,家長自然會對這樣的建議半信半疑。

  為了不存在的東西挨一針?感覺就跟撒大象粉一樣。

  只是麻疹和大象不同,威脅並未消失,始終千真萬確。只不過家長遺漏了做決定所需的資訊與數據,所以才看不到風險。

  凡是遺漏的資訊與數據,我一概以「暗數據」(dark data)稱之。暗數據隱而不顯,單憑這點就可能導致誤解、錯誤結論及壞決定。簡單說,就是無知會讓人出錯。

(圖/Unsplash)
(圖/Unsplash)

  暗數據一詞發想自物理學的暗物質(dark matter)。宇宙有二七%由這種神祕物質構成。由於它不跟光和電磁輻射作用,肉眼不可見,進而使得天文學家長年不知其存在。直到觀察星系旋轉,發現距離星系中心較遠的星體移動速度並不比距離較近的星體慢,違反我們對重力的理解,天文學家才察覺不對。於是,有人假設星系的總質量比望遠鏡觀察到的星體和其他物體的質量總和還大,這樣就能解釋星系旋轉的反常現象。由於我們看不見那多出來的質量,所以稱之為暗物質,而且這種物質可能分量(我差點就說「質量」)驚人:據估計,我們所在的銀河系擁有的暗物質是一般物質的十倍左右。

  暗數據與暗物質很類似──我們見不到那些數據;那些數據沒有紀錄,卻會大大影響我們的推論、決定與行動。本書稍後將會舉例說明,除非我們察覺四周潛藏著未知的事物,否則後果可能不堪設想,甚至致命。

  本書嘗試探討暗數據如何出現,以及為何出現。書中將檢視各種暗數據;瞭解這些數據的成因;說明哪些步驟可以避免暗數據出現,防範未然;介紹察覺自己被暗數據蒙蔽時該如何處置;最後指出只要夠聰明,有時還能利用暗數據,從中得益。雖然聽來奇怪又矛盾,但我們確實能夠利用無知和暗數據,思考做出更好的決定與行動。說得更具體一點,就是讓我們生活得更健康、賺更多錢,並明智運用未知來降低風險。這不代表我們應該對別人隱瞞資訊(雖然本書之後幾章會提到,刻意隱瞞的數據是常見的一種暗數據),實際作法比這複雜許多,而且所有人都會受益。

  暗數據有各式各樣的形態,成因也五花八門,因此本書建立了一套分類法,以「DDTx」表示「X型暗數據」,並將暗數據分成十五種類型。然而,這套分類並不完全。暗數據的成因太多,可能永遠無法完全分類,而且某個暗數據實例可能同時展現不只一種暗數據的影響。不同型的暗數據可以聯手,甚至產生不幸的加乘效應。儘管如此,覺察這些暗數據類型,檢視暗數據生成的實例,還是能讓你在問題浮現時立即發現,免於受害。我在本章結尾列出了所有暗數據類型(DD-Tx),按相似度粗略排列,並且將在第十章詳加說明。書中有些例子,我會明白指出這是某一型暗數據,但我刻意避免每個例子都標明,以免妨礙閱讀。

  正式開始之前,讓我再舉一個例子。

  在醫學領域,創傷是一種重傷害,可能留下嚴重的長期後患,或可導致過早死亡與殘障,是「壽命減損」的最重大事由之一,也是四十歲以下人口最常見的死因。創傷審計與研究網路(TARN)擁有歐洲最大的醫學創傷資料庫,蒐集的創傷紀錄來自全歐兩百多所醫院,除了英格蘭和威爾斯九三%以上的醫院,還包括愛爾蘭、荷蘭和瑞士的各級醫院。不論研究創傷病例的預後或治療的有效性,這個網路顯然都是非常豐富的寶藏。

  英國萊徹斯特大學的艾夫吉尼.莫克斯(Evgeny Mirkes)博士的研究團隊,檢視了創傷審計與研究網路的部分數據。他們研究十六萬五五五九個創傷病例,發現其中有一萬九二八九個病例結果不明。在創傷研究中,所謂「結果」是指病患受創三十天以後是否存活。因此,一一%的創傷病人三十天後是否存活,我們不得而知。這是很常見的一型暗數據──DD-T1:我們知道漏掉的數據。我們知道這些病人一定有結果,只是不曉得結果是什麼。

  你可能會想,這有什麼問題?只要分析我們知道結果的那十四萬六二七○位創傷病人,從中得出理解與預後就好。畢竟十四萬六二七○是個大數字,至少醫學上如此,所以我們當然可以很有把握地說,從這些數據得出的結論是正確的。

  可是,真的是這樣嗎?說不定少掉的那一萬九二八九人的數據,跟其餘病人很不一樣。畢竟他們顯然有一個不同點,就是結果不明,因此設想他們可能還有其他方面和其餘病人不同,也就不無道理。相較於納入全體創傷病人,只分析結果已知的十四萬六二七○位病人可能會造成誤導,據此採取的作為也可能出錯,可能導致錯誤的預後、不正確的處方、不當的治療方案,對病人造成不幸甚至致命的後果。

  讓我們暫時撇開現實,舉個極端的例子吧。假設結果已知的那十四萬六二七○位病人,未受治療都存活下來並康復了,而結果不明的那一萬九二八九名病人都在就診後的兩天內死亡。這時要是忽略結果不明的病例,我們就會信誓旦旦地下結論說,不用擔心,所有創傷病人都會康復,面對新的創傷病人也都覺得他們自己會好,因而不進行任何治療,結果卻驚慌又困惑地發現怎麼會有一一%以上的病人性命垂危。

  在往下說之前,我想先請讀者放心,我舉的極端例子是最嚴重的狀況,我們大可相信現實不會這麼糟,而且莫克斯博士和他同事是研究遺漏數據的專家。他們很清楚箇中危險,也一直努力研發統計方法來處理這類問題,本書稍後會介紹這些方法。但這個例子給我們的教訓是,事情可能不是外表看上去那樣。事實上,如果你要我用一句話總結這本書,我可能會用這句話。擁有大量數據是好事,也就是所謂的「大數據」,然而不是量多就好。要瞭解真實情況,我們不知道和不擁有的數據,可能比我們擁有的數據還重要。不論如何,我們之後就會明白暗數據的問題不只發生在大數據,小數據也躲不過。暗數據的問題無所不在。

  我舉的TARN資料庫的例子可能很誇大,但很有警惕作用。那一萬九二八九位病人的結果沒有紀錄,可能恰恰因為他們都在三十天內過世了。畢竟如果結果是入院三十天後才測量,過世者顯然沒辦法回答問題。除非我們意識到這個可能,否則永遠不會記錄到過世的病人。

  這件事乍聽之下有點蠢,其實還滿常發生的。例如我們根據之前接受某項治療的病患的結果建立了一個模型,用來判斷新進病人的預後,決定他們是否要接受該項治療。但要是之前設定的時間對某些病患來說太短了,來不及出現結果呢?對於那些病患,我們其實並不曉得最終結果。如此一來,只建立在結果確定的病患上的模型便有可能造成誤導。

  民調也有類似的狀況,「未回應」往往會造成問題。研究者通常會有一份名單,上頭是他們希望回答問題的人,但通常不是所有人都會作答。要是作答和不作答的人在某些方面有所不同,研究者就得擔心統計數據能否切實反映母群體的狀況。畢竟如果某家雜誌進行訂戶調查,只問訂戶一個問題:你有回覆本刊的調查嗎?我們也不能因為回覆調查的人答「有」的比例百分之百,從而推論所有訂戶都有回覆。

  前面這些例子都是第一型暗數據。即使不是所有TARN病人的量測值都有記錄下來,我們確信他們都有數據。我們也知道所有接受民調的人心中都有答案,只是有些人沒有作答。我們通常知道數值一定在,只是不曉得是多少。

  接下來是另一型暗數據(DD-T2:我們不知道漏掉的數據)的例子。

  許多城市都有路面坑洞的問題。冬天水會滲進路面縫隙,然後結凍,將裂縫撐大,接著又被車子的輪胎不停碾過,形成惡性循環,最後弄出足以損壞輪胎或車軸的大洞來。美國波士頓市決定運用現代科技來解決這個問題。市府推出一款手機應用程式,使用手機裡頭的加速度感測器偵測車輛經過坑洞時的震動,再用GPS將坑洞位置傳回市府單位。

(圖/Unsplash)
(圖/Unsplash)

  這招真是太帥了!這下高速公路養護工程大隊肯定知道上哪兒填補坑洞了。

  這又是一個運用現代數據分析技術,輕鬆漂亮解決實務問題的好例子──只不過有車又有手機的人通常集中在收入較高的地區。因此,收入較低地區的路面坑洞可能不會被偵測到,坑洞位置也不會送出,某些區段的路面坑洞可能永遠不會補好。結果,這個方法非但沒有徹底解決問題,反而可能加劇了社會不平等。這個例子跟TARN的例子不同。TARN的例子是我們知道數據有遺漏,這個例子我們則是不知道數據存在。

  以下是這型暗數據的另一個案例。二○一二年十月底,又名「超級珊蒂」的珊蒂颶風襲擊美國東岸,不僅造成美國史上第二慘重的颶風災情,也是自有紀錄以來最猛烈的大西洋颶風,財物損失估計高達七百五十億美元,共有八個國家兩百多人死亡。美國有二十四州受到影響,包括佛羅里達、緬因、密西根和威斯康辛,金融市場也因為停電而關閉。這場颶風還間接造成九個多月後生育率突然飆升。

  除此之外,現代媒體也在這場颶風中大獲全勝。珊蒂颶風所到之處,推特也颳起一場訊息風暴,分享即時現況。推特的功用就是在第一時間告訴你哪裡發生了什麼事,還有發生在誰身上。這是個讓人即時掌握事情動態的社群媒體平台,而珊蒂颶風來襲期間正是如此。二○一二年十月廿七日至十一月一日,推特上出現了兩千萬則颶風的相關貼文。於是我們可能會想,這些貼文應該可以讓我們持續掌握颶風的發展,找出哪些地區受創最重,哪裡需要緊急救援吧?

  然而,事後分析顯示,珊蒂颶風相關推文最多來自曼哈頓,只有少數推文來自洛克威海灘或康尼島等地。這表示洛克威海灘和康尼島受創較不嚴重嗎?的確,曼哈頓區的地鐵和街道都淹水了,但很難說是受創最重的地區,就算只論紐約亦然。想也知道,實情是推文較少的地區之所以如此,不是因為受到颶風衝擊較小,純粹是因為那裡的推特用戶較少,比較少人有手機可以貼文。

  其實,同樣的狀況我們可以推到極端。假設有個地方被珊蒂颶風徹底摧毀,那個地方就不會有推文出現,結果可能讓人以為那裡一切無恙。這可真是暗數據,黑暗得很。

  和第一型暗數據一樣,第二型暗數據(我們不知道有所遺漏的數據)也是無所不在,只要想想沒被查到的詐騙案或查無凶殺案的被害者訪查報告,就會明白我的意思。

  對於前兩型暗數據,你可能覺得似曾相識。前美國國防部長朗斯菲德(DonaldRumsfeld)在那場名震全球的記者會上,曾經一語道破箇中奧妙:「這世上有已知的未知,也就是有些事我們知道自己不知道。但這世上還有未知的未知,也就是有些事我們不知道自己不知道。」朗斯菲德因為這句晦澀的發言而遭到大量媒體奚落,但那些批評並不公道。朗斯菲德說的不僅有道理,而且完全正確。

  不過,這兩型暗數據只是開胃菜而已。下一節我們會再介紹幾型暗數據。這些和之後談到的暗數據,就是本書的全部內容。你將會明白,暗數據類型千變萬化。除非我們察覺到數據可能不完全,觀察到東西不代表觀察到全部,測量可能不準確,測量到的可能不是我們想測量的東西,否則很可能對事實狀況產生偏頗的認知。只因為沒有人在森林裡聽見樹倒了,不代表樹沒發出聲音。(未完)

●本文摘選自大塊文化出版之《暗數據》


颶風 麻疹 大象 大塊文化 閱讀風向球

延伸閱讀

《離婚活動》軍官瑛太的少女心 擁抱超可愛宇宙兔萌爆

影/大象跌深溝獲救後一個特殊動作 引起全球網友激辯

新北改裝公車成防疫巴士 協助運送輕症者

感人!防疫巴士司機熱到中暑 休息1天再表達願意出勤

相關新聞

大師兄火葬場報到!新書《火來了,快跑》看火化爐後的人生百態

原本在殯儀館擔任接體員的大師兄,離開零度以下的冰庫,調到千度高溫的火葬場。新書《火來了,快跑》便寫出火化爐的後台故事,再次以大師兄幽默輕鬆又溫馨的敘事風格,為讀者揭開火葬場的神秘面紗。

少女老王/請再給三倍券一次機會!

「三倍券一張一張蓋太麻煩了,直接拿去花掉好了。這個月我過生日又有週年慶,搭配三倍券折扣,剛好把東西買一買啊!」 於是,我們一家人各背著一袋三倍券,悲壯的站在因為週年慶,到處都在排隊的百貨公司大門口⋯⋯

讀者票選最佳歷史小說!《塵埃與灰燼》命運多舛二戰戀人及苦痛抉擇

最無常的命運,最禁欲的渴望,大時代底下最動人心魄的奇蹟。讀者票選Goodreads最佳歷史小說,Goodreads、Amazon網站共57,000多名讀者直逼5星盛讚! 《塵埃與灰燼》描述1943年

Middle/或許不要往來,就是最好的再見。不要問候,就是最好的忘記

我只是選擇用這一種比較不會太痛的方式,去紀念那些遺憾與曾經而已。

憂鬱會殺了我們的孩子!吳鳳新書談教育,為孩子找回「快樂」DNA

許多人被問道希望自己的孩子長大後成為什麼樣的人時,心中可能出現數十種不同的答案:聰明、乖巧或成功等美好的願景。而吳鳳面對這道問題時,他給出的答案是:「快樂」。他認為自己教育的過程中,孩子的快樂永遠擺在第一位。吳鳳常在臉書上分享,自己近幾年來最大的變化就是有了兩個女兒,與女兒聊天時,常常問她「是不是快樂?」「哪些事讓妳快樂?」

《一生必修的科學思辨課》霍金的名聲與評價

一般常認為,科學有著客觀思考、充滿理性的特質,但事實並非如此,科學既不真理性,也不全客觀,大科學家戴森說的好,「科學更接近藝術,而非哲學」。

商品推薦

udn討論區

0 則留言
規範
  • 張貼文章或下標籤,不得有違法或侵害他人權益之言論,違者應自負法律責任。
  • 對於明知不實或過度情緒謾罵之言論,經網友檢舉或本網站發現,聯合新聞網有權逕予刪除文章、停權或解除會員資格。不同意上述規範者,請勿張貼文章。
  • 對於無意義、與本文無關、明知不實、謾罵之標籤,聯合新聞網有權逕予刪除標籤、停權或解除會員資格。不同意上述規範者,請勿下標籤。
  • 凡「暱稱」涉及謾罵、髒話穢言、侵害他人權利,聯合新聞網有權逕予刪除發言文章、停權或解除會員資格。不同意上述規範者,請勿張貼文章。